

Cross—comparison of AIRS Cloud Products with ARM and A-train Measurements

by

Brian Kahn¹, Amy Braverman¹, Annmarie Eldering¹, Eric Fetzer¹, Evan Fishbein¹, Michael Garay^{1,2}, Jonathan Jiang¹, Sung-Yung Lee¹, and Shaima Nasiri³

Cloud pictures courtesy of australiansevereweather.com

¹Jet Propulsion Laboratory, Pasadena, CA, USA

²Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, CA, USA

³Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA

Outline

- > How valid are the AIRS V4 cloud fields?
- > Focus on upper level CTP
 - > ARM TWP mm-wave cloud radar (Manus Island) and micropulse lidar (Nauru Island)
 - > AIRS is sensitive (statistically significant) to thin (and thick) cirrus
- > AIRS CTP and Microwave Limb Sounder (MLS) IWC comparisons
 - > PDFs of AIRS and MODIS agree well...
 - > ...but statistics conditional on MLS level, IWC threshold, AIRS ECF, etc.
- > AIRS and MODIS: a "holistic" view
 - ➤ Use CTP, ECF and T_s to explore consistency in retrievals
 - ➤ Good agreement for high and opaque clouds
 - > Some issues within multilayer clouds and cloud edges
- ➤ Where to go from here?

Checking the cloud top height between AIRS and Atmospheric Radiation Measurement (ARM) program observations

Frequency histogram of the agreement between an active and passive-derived Z_{CLD} obtained from several independent data sources. We compare ARM-AIRS to:

Top: ground-based MMCR with GMS-5 (*Hollars et al.*, 2004)

Bottom: aircraft lidar and the MODIS Airborne Simulator Z_{CLD} (*Frey et al.*, 1999), ground-based lidar+radar and GOES Z_{CLD} (*Hawkinson et al.*, 2005), and ground-based lidar and AIRS Z_{CLD} .

AIRS Science Team Meeting, March 7–9, 2006

What about AIRS and MLS?

- > MLS is a passive microwave limb sounder
- > Reports IWC at 11 altitudes from 46 to 316 hPa
- \triangleright "Pixel" size roughly $165 \times 7 \times 3$ km (along-track, cross-track, and vertical)
- > Use nonzero IWC as a proxy to CTP
 - ➤ Highest altitude of occurrence of IWC > 0 defined to be CTP
 - > Lowest values of IWC "similar" to clear sky
- > Define AIRS CTP two ways:
 - > "High": lowest CTP from 3 nearest along-track
 - ➤ "Avg": average CTP from 3 nearest along-track
- > Different "views" of similar clouds

- Frequency of <u>coincident</u> AIRS and MLS P_{CLD}. The AIRS values in 20 hPa bins, and MLS reported at the MLS standard pressure levels.
- When we use all AIRS and MLS clouds, PDFs vary substantially
- When we exclude MLS max IWC < 1.0 mg m⁻³, the agreement is similar
- When we exclude MLS first IWC < 1.0 mg m⁻³, the agreement is *much improved*

Used ~20 days in January 2005 ± 30 deg latitude

Difference between AIRS and MLS P_{CLD} per MLS pressure level: AIRS "hi" approach at top, "avg" approach at bottom

Some MLS pressure levels agree much more poorly than others

<u>Lesson</u>: the cloud morphology might look good after averaging, but individual match-ups can have large disagreement

Coincident AIRS and MODIS Cloud Products

- *Many* cloud products from AIRS and MODIS: stick to (operational) fundamental quantities ECF and CTP
- AIRS reports up to two cloud layers of CTP and ECF, MODIS only one
- MODIS reports ~ 5 km, while AIRS ~ 15 km for ECF, ~45 km for CTP
- Need to collocate AIRS and MODIS: not trivial
- How do we compare similar quantities from different instruments?

Consistency between AIRS and MODIS cloud products?

Left: September 6th, 2002, Granule 11, North-Central subtropical Pacific Ocean

Right: Agreement between AIRS and MODIS T_{CLD} , P_{CLD} , and f as a function of AIRS retrieval type.

Bottom line:

When clouds are thin and broken: *bad agreement*.

When clouds are high and thick: *good agreement*.

Should we think of cloud products in terms of "a whole"?

$$\begin{split} BT_{AIRS} &= f_1 \cdot T_1 + f_2 \cdot T_2 + (1 - f_1 - f_2) \cdot T_{sfc} \\ BT_{MODIS} &= f_{cld} \cdot T_{cld} + (1 - f_{cld}) \cdot T_{sfc} \end{split}$$

• "Re-build" BT from MODIS and AIRS cloud and surface products

AIRS footprint

- Replace Planck function by T of emitting layer or surface
- First-order means of comparison: does not guarantee that T or f agree individually, but shows if the "sum of the whole" agrees or not
- All products averaged to AMSU scale (~ 45 km)

<u>Bottom line</u>: A way to look at "consistency" of cloud products between AIRS and MODIS

Should we think of cloud products in terms of "a whole"?

<u>Bottom line</u>: BT_R is consistent, except near Ci edges – many possible reasons for disagreement

Should we think of cloud products in terms of "a whole"?

<u>Bottom line</u>: BT_R is consistent, except near Ci edges – many possible reasons for disagreement

Why are there differences?

- MODIS and AIRS look at different clouds: collocation not perfect
- "Misplaced" MODIS cirrus as low cloud (MODIS cloud mask misses Ci w/ τ < 0.2–0.3)
- Multilayered clouds: errors in inferred cloud properties [Baum and Wielicki 1994]
- Method of averaging MODIS to AIRS footprint (lessons from AIRS/ARM comparisons)
- Nonlinearity in BT: misfits of MODIS and AIRS radiances, use of different channels
- Systematic errors in retrieval algorithms?
- 3-D IR effects [Liou and Ou 1979; Harshvardhan and Weinman 1982; Cornet et al. 2005]

Midlatitude SH

Subtropical/tropical SH

Midlatitude NH

Equatorial East Pacific

Summary and Conclusions

- AIRS upper level CTP agrees well with ARM CTH, even for thin cirrus
 - Lidar comparisons imply AIRS CTP locates thin cirrus better than MMCR
- AIRS and MLS cloud placement similar when thin, tenuous cases discarded
 - However, height-dependence on agreement
- Holistic view of AIRS and MODIS more consistent than individual comparisons
 - Disagreement in reconstructed BT associated with cloud edges, multilayer clouds
 - Other possible reasons too
- Confidence in AIRS Version 4.0 clouds, despite large pixel size (~45 km CTP, ~15 km ECF)
- Useful for quantitative analyses, such as cirrus mapping and frequency, and τ and D_e retrievals